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Abstract
Experimental results show that the free carrier mobility in AlGaN/GaN quantum
wells strongly decreases with the carrier density. Using the dynamical theory,
we show that this behaviour can be explained by a combination of phonon,
carrier–carrier and interface defect scattering mechanisms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Heterostructures of the wurtzite nitride family are in a quite unique position, since their (0001)
interfaces are expected to bear a surface charge σ0 resulting from the difference between the
polarizations of the two alloys that are building the interface [1]. The spontaneous charge may
be increased because of a strong piezoelectric response taking place in the strained cap layer
[2–6]. For given set-ups, this charge creates an attractive potential and therefore a quantum well
whose filling by free carriers results from the electronic dielectric response of the whole system
(figure 1). The (screening) free electrons come either from the ionization of surface states or
from bulk states. It can be shown experimentally that one does not need any intentional doping
of the cap layers to obtain free carrier densities as large as several 1013 cm−2—opposite to the
case of quantum wells in the GaAs family, in which densities are generally limited to 1011–
1012 cm−2. This particular situation has stimulated the interest from the device industry since
a larger density of free carriers with a lack of scattering by doping ionized impurities should
lead, in principle, to a large conductivity and therefore to good device performances. However,
for obtaining increasing free carrier densities in the quantum well, it is necessary to combine
an increase of the thickness of the AlGaN layer with use of increasing x compositions of the
Alx Ga1−x N alloy. As a result, experimental measurements of transport properties obtained on
LP MOVPE AlGaN/GaN heterostructures [7] clearly show that the carrier mobility µ severely
decreases with the cap layer thickness and/or the x-value. More generally, collecting on the
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Figure 1. A schematic representation of an AlGaN/GaN triangular potential.

same curve all the points µ versus the carrier density ns obtained for various samples (differing
in their AlGaN thickness or x-composition), we observe a severe decrease of the mobility with
increasing 2D carrier density (see figure 2). This mobility decrease may result from intrinsic
mechanisms but also from the fact that the thicker the cap layer or the higher the x-value of the
alloy composition, the higher the elastic energy stored in the cap layer. As a consequence, once
a certain critical elastic energy limit is reached, it may induce strain relaxation mechanisms: the
appearance of dislocations, interface roughness, but also, in the case of the structures presented
in figure 2, the appearance of more and more V-shaped nano-holes and nano-trenches as seen by
AFM [8]. This therefore creates new material-related (extrinsic) scattering mechanisms [7, 8].
The aim of this paper is to show that the experimental results may be theoretically recovered
mainly by a combination of phonon,carrier–carrier and ‘interface roughness-related’ scattering
mechanisms.

2. The theoretical framework

2.1. Use of the dynamical theory

For the low-field transport calculations, we have used the extension of the dynamical transport
theory [9] to the case of a multi-occupied sub-band 2D system, with multi-sub-band screening
included. In this approach [10], the collision time for isotropic scattering potentials is given by

1

τ±
n (�k)

= 2π

h̄
e2 B± ∑

n′,k′
|〈n, k|V tot (r,±ω)|n′, k ′〉|2(1 − cos(�k, �k ′))δ[εn′(k ′) − εn(k) ± h̄ω]

(1)

with �k ′ = �k ∓ �q and where

B± = ∓ f0(εk ∓ h̄ω) − f0(εk)

h̄ω(∂ f0/∂ε)εk

. (2)

The signs + or − stand respectively for emission or absorption processes. Vtot(r) is the
total scattering potential, with screening effects included, as indicated by the subscript ‘tot’.
The subscripts n and n′ denote the various sub-bands. In the case of elastic potentials (ionized
impurities, acoustic phonons, . . .), the scattered electrons conserve their energy as well as
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Figure 2. Room temperature mobility versus carrier density. The points were obtained for
various AlGaN/GaN quantum wells grown by LP-MOCVD. The full curve is the mean polynomial
representative curve.

their momentum modulus. In such cases, expression (1) reduces to the classical Boltzmann
relaxation time. Matrix elements entering (1) are screened scattering potentials calculated
between the various eigenstates |n, k〉 of the quantum well. In the case of multi-sub-band
screening, they are given by [10]

〈n, k|V tot(r,±ω)|n′, k ′〉 = δk′,k∓q

∫
Z∗

n(z)Zn′(z))V tot (q, z,±ω) dz = δk′,k∓q Mtot
n,n′(q,±ω)

(3)

where the various Mtot
n,n′(q,±ω) are solutions of the following set of linear equations:∑

m,m′
ε

m,m′
n,n′ (q,±ω)Mtot

m,m′ (q,±ω) = Mext
n,n′ (q,±ω). (4)

The unscreened potential matrix elements Mext
n,n′(q,±ω) have the same definition (2) as

Mtot
n,n′(q,±ω). The approximated expressions for the dielectric tensor components can be

obtained in the form

ε
m,m′
n,n′ (q, ω) = δn,mδn′,m′ +

kSC,m(ω)

q
δn,n′δm,m′ . (5)

A set of screening wavevectors kSC,m are then defined and are given, in the case of static
screening, by

kSC,m(0) = m∗e2 f (εm)

2π h̄2εL
. (6)

3. Numerical determination of the quantum well energy states

Generally, the wavefunctions chosen for the evaluation of the various matrix elements are
trial analytical functions [7, 11, 12] which, in practice, only allow the description of the
first sub-band. In order to simulate the quantum well mobility and to check the effect of the



13322 J-L Farvacque et al

-2.00E-03

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

1.80E-02

-40 -20 0 20 40 60 801 100

Oz axis (angström)

w
av

e
fu

n
ct

io
n

sq
u

ar
e

m
o

d
u

lu
s

1 2

Figure 3. Wavefunction squared moduli of the two first energy states calculated for an
Alx GA1−x N/GaN quantum well with x = 0.3 and assuming that the interface charge σ is equal to
the electronic density ns .

carrier confinement on the various scattering mechanisms we have determined numerically
the energy states and their associated wavefunctions, adapting methods usually used in ab
initio calculations to the establishing and resolution of the envelope function equation [13].
Owing to the particularly large electronic density within the wells, the Coulomb interaction
as well as the exchange and correlation contributions were introduced in the Kohn–Sham-like
envelope function equation. Since the quantum well states are localized, it is assumed, in our
numerical method, that they vanish at the extremities of a segment of length L in which the
quantum well potential is embedded. Thus, the wavefunctions may be expressed as a Fourier
series of planes waves that are naturally defined by the segment length L. In this plane-wave
basis, the envelope function equation transforms into a matrix where the Coulomb as well
as the exchange and correlation potentials are automatically calculated using the fast Fourier
transform technique. The Kohn–Sham matrix eigenelements are then numerically solved using
an iterative procedure and their eigenvalues allow us, finally, to calculate the full quantum well
energy ET (L) which turns out to be a function of the parameter L. This last value L is chosen
so as to minimize ET . This variational procedure, already used in [14, 15], allows one to get
precise numerical results with a relatively low number of plane waves (∼50 in the present
1D localized case). Figure 3 illustrates the first two wavefunctions found in the case of the
triangular potential shown in figure 1. Numerical results indicate that:

(i) for low carrier densities, more than one sub-band is significantly occupied by electrons,
justifying the multi-sub-band formalism for the low-field transport calculation, with multi-
sub-band screening effects included;

(ii) an increasing carrier density leads to a stronger confinement of the electronic density
which is pushed towards the interface;

(iii) the Fermi level is strongly pushed upward to large energy values and exceeds 90 meV
above the first energy ground state as soon as the carrier density exceeds ∼8 × 1012 cm−2

(note that this particular value corresponds to the optical phonon energy).

4. Scattering mechanisms

We have introduced, in the present calculation, scattering mechanisms associated:

(i) with a possible distribution of ionized impurities within or outside the quantum well;
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(ii) with threading dislocations (the Coulomb potential associated with a possible dislocation
charge and the scattering potentials associated with the dislocation strain field);

(iii) with acoustic phonons interacting with electrons through the deformation potential and
piezoelectric coupling;

(iv) with optical phonons interacting with electrons through their polar optical potential;

(v) with carrier–carrier scattering;

(vi) with interface roughness.

The two first types of scattering potential are quite standard and their 2D associated collision
times can be straightforwardly derived from the well known 3D formulations [16, 17]. They
will not be described in this paper. Although phonon scattering potentials are also well known
in the 3D systems, the electron localization along the Oz axis in the case of quantum well
leads to particular effects that we will underline in the following section. We also describe
the carrier–carrier scattering since we make use of a slightly modified version of the Episov
and Levinson formulation [18, 19]. Finally, in the particular case of triangular quantum well
potentials, the description of interface roughness scattering is not obvious and we shall detail
our approach in the following.

4.1. Phonon scattering

Although in 2D systems the phonon field may be different from that of 3D systems, it is
generally assumed, for scattering calculation purposes, that it is sufficient to consider the 2D
electrons as interacting with a 3D (unperturbed) phonon field. We use also this substantially
simplifying approximation. In this case, acoustic as well as optical phonons interact with the
carriers through potentials of the form

Vph,κ (�r) = A(κ, ω)(aκe−i�κ ·�r + a+
κ ei�κ ·�r ) (7)

where κ is the 3D phonon momentum, a and a+ are annihilation and creation operators. The
various functions A(κ, ω) depend on the phonon/electron coupling mechanisms and can be
found in Ridley’s book [16]. Such potentials (7) connect the electron and phonon systems,
so their matrix elements have to be calculated connecting eigenstates corresponding, at first
order, to the direct product of independent electron eigenstates |n, k〉 and independent phonon
eigenstates |nκ〉. In the particular 2D case, this gives, with 〈r |n, k〉 = (1/

√
S) exp(i�k · �ρ)Zn(z),

Mext,±
n,n′ (�q, ω) = A(κ, ω)

(
δ�k′ ,�k±�q

√
nκ + (1 ± 1)/2

∫ ∞

−∞
Z∗

n(z)Zn′(z)e±iqz z dz

)
(8)

where we have introduced �κ = (�q, qz) and where �q = �k ′ ∓ �k is a 2D vector. nκ corresponds to
the Bose–Einstein occupation function. The screened matrix elements to be introduced in the
collision time expression (1) are then solutions of equations (4) in which expressions (8) are
introduced. It is worth noting that the final result will depend on the whole set of functions

I ±
n,n′(qz) =

∫ +∞

−∞
Z∗

n(z)Zn′(z)e±iqz z dz (9)

which are nothing else than Fourier transforms. These functions imply that the more confined
the electronic density, the larger the phonon scattering effect: a consequence of the Heisenberg
inequalities. This last remark constitutes the main difference between 2D and 3D electronic
systems for phonon scattering.
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4.2. Carrier–carrier scattering

This is essentially a two-particle process interacting through the Coulomb potential. Neglecting
exchange contributions, we consider initial and final two-particle wavefunctions given by

|1, 2〉 = 1

S
Z(z)Z(z2)ei(�k· �ρ+�k2 · �ρ2) |1′, 2′〉 = 1

S
Z(z)Z(z2)ei(�k′ · �ρ+�k′

2 · �ρ2) (10)

with �r = ( �ρ, z). It is straightforward to show that the Coulomb potential matrix elements
connecting such states are given by

〈1, 2| e2

4πε0εL |�r1 − �r2| |1
′, 2′〉 = Fn(q)

S2ε0εLq
(11)

where we have introduced the form factor F(q) given by [18, 19]

Fn(q) =
∫

e−q|z−z2||Zn(z)|2|Zn(z2)|2 dz dz2. (12)

The relaxation time may be obtained using (1) which has to be weighted in order to account
for the occupation ratio of state 2 and empty-place ratio of state 2′. Introducing εk′

2
−εk2 = h̄ω,

this gives for each sub-band

1

τn(k)
= πe4

2(ε0εL)2h̄S2

∑
k′ ,k2,k′

2

f (εk′) − f (εk)

−h̄ω(∂ f /∂ε)k

F2
n (q)

q2

�k · �q
k2

δ(εk′ − εk − h̄ω)

× · · · × f (εk2)[1 − f (εk′
2
)]. (13)

It is hard to proceed further without any approximation. In order to find again the usual
Episov and Levinson expression [19], we restrict the scattering processes to quasi-elastic
collisions (ω → 0). This leads to

1

τn(k)
= − πe4

2(ε0εL)2h̄S2

∑
k′,k2

F2
n (q)

q2

�k · �q
k2

δ(εk′ − εk) f (εk2)[1 − f (εk2)]. (14)

Expression (14) disconnects the sums over k ′ and k2. The sum over k2 can be exactly
calculated in 2D systems and gives

∑
k2

f (εk2)[1 − f (εk2)] = K T m∗S

2π h̄2 (1 − exp(−π h̄2nn/m∗K T )) (15)

where nn is the electron density of sub-band n. Transforming the sum over k ′ appearing in (14)
into an integral, this gives

1

τn(k)
= m∗2 K T e4

16π2(ε0εL)2h̄5
(1 − exp(−π h̄2nn/m∗K T ))

∫ 2π

0

F2
n (q)

q2
(1 − cos θ) dθ. (16)

Note that this last expression exactly coincides with the Episov and Levinson formula as
soon as one makes the approximation 1 − exp(−π h̄2nn/m∗K T ) ∼= π h̄2nn/m∗K T . However,
the use of (16) leads to larger and more realistic mobility values.

4.3. Interface roughness scattering

Generally, the interface roughness scattering potential amplitude V0 in square quantum wells is
approximately determined by assuming that locally, the fluctuation of the interface position z
of a quantity b (the roughness amplitude) shrinks the well width. Thus, assuming an infinitely
deep potential of width L, this leads to a modification of the fundamental ground state of
the quantum well given by V0 = dε1

∼= d(h̄2π/2m∗L2) = −h̄2πb/4m∗L3. Obviously, this
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method can no longer be used for triangular quantum wells, where, in a first approximation,
the interface roughness only shifts the potential by a distance b: V (z) → V (z − b). To solve
this particular problem, we may attribute to each point (x, y) a probability Pb(x, y) that the
interface is shifted by a distance b. Thus the Hamiltonian of the quantum well in the presence
of interface roughness is given by

HQW = p2

2m∗ + V (z) + (V (z − b) − V (z))PB(x, y) = H0,QW + W (x, y, z). (17)

The W (x, y, z) operator represents the interface roughness scattering potential. As long
as this term constitutes a perturbation of the perfect QW Hamiltonian, its matrix elements
(entering the definition of the collision time) may be calculated connecting the eigenstates of
the perfect QW Hamiltonian. This gives

Wn,n(q) = 1

S

∫
e−i�k· �ρ |Zn(z)|2Wei�k′ · �ρ dx dy dz

= 1

S
Pb(q)

∫ ∞

−∞
|Zn(z)|2(V (z + b) − V (z)) dz. (18)

Since the quantum well potential as well as its wavefunctions Zn(z) are known, the integral
Vn = ∫ |Zn(z)|2(V (z + b) − V (z)) dz entering (18) can be determined numerically. The
remaining Pb(q) term is the Fourier transform of the probability Pb(x, y) which, using a
standard result of statistical physics, may always be expressed in the form [20]

Pb(q) = Sb exp

(∑
n

(iq)n

n!
Cn

)
(19)

where Cn = 〈ρn〉 − 〈ρ〉n with 〈ρn〉 = ∫
ρn Pb(ρ) dx dy and where Sb is a normalizing factor.

In the case where the interface roughness is isotropic, only the C2n coefficients do not vanish
so, if we limit the sum to the second-order term in (19), we obtain [10, 21, 22]

Pb(q) = Sbe−q2d2/4 → Pb( �ρ) = Sb

πd2
e−ρ2/d2

(20)

where we have introduced a correlation length d = √
2C2 in order to recover a usual correlation

function (corresponding to the reversed Fourier transform of Pb(q) also shown in 14). The
above definition also implies that Sb = ∫

Pb( �ρ) d2ρ represents the area where the interface
has been shifted. Introducing (20) into (18) we find

Wn,n(q) = Sb

S
Vne−q2d2/4 = φVne−q2d2/4 (21)

where φ is a ‘roughness’ covering ratio.

5. Theoretical results and discussion

The total effect of acoustic and optical phonon scattering is illustrated in figure 4 (full curve
with black squares). It leads to mobility values which strongly decrease with increasing carrier
density. This strong decrease is a consequence of the progressive spatial localization of the
electronic density which allows a larger and larger uncertainty in the electron momentum Oz
component and therefore a larger and larger phonon contribution to the 2D electron scattering
events. Moreover, increasing the carrier density also leads to a higher location of the Fermi
level which reaches values (over the first sub-band ground state energy) larger than the optical
phonon energy as soon as the carrier density reaches ∼8 × 1012 cm−2. Thus more and more
optical phonon emission processes are possible and also the contributions to the free carrier
mobility decrease.
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Figure 4. Theoretical calculation of the mobility at 300 K. The dashed curve is the mean polynomial
representative curve for the experimental points. The full curve with black squares represents the
role of acoustic and optical phonon scattering. The full curve with black circles represents the
combined effect of phonon and carrier–carrier scattering. The full curve with black triangles
represents the combined effect of phonon, carrier–carrier, impurity (ND = 4 × 1018 cm−3) or
dislocation (Ndislo = 1010 cm−2) scattering.

When the carrier–carrier scattering is also taken into account, it leads to results shown
in figure 4 (full curve with black circles). Such results include all the intrinsic (unavoidable)
mechanisms and explain the regular decrease of the mobility. When the carrier density reaches
values as large as 1.3 × 1013 cm−2, the mobility values tend approximately towards a constant of
the order of 1100 cm2 V−1 s−1. In principle this value should constitute the maximum mobility
of the quantum well at large carrier densities. Comparing to the experimental results shown
in figure 4 (dashed curve), it is clear that the combined phonon and carrier–carrier scattering
mechanisms do not explain by themselves either the saturation of mobility obtained at low
carrier concentration or the very sharp decay of the mobility that starts at carrier concentrations
of 1.4 × 1013 cm−2.

Introducing impurity scattering in the calculation provides the possibility of decreasing
the mobility but only in the range of low carrier concentrations (figure 4, full curve with
black triangles). However, to obtain values of the order of the experimental ones, it would
be necessary to introduce ionized impurity densities as large as 4 × 1018 cm−3 which is an
unrealistic value. Moreover, due to the increase of the screening effects with increasing carrier
density, impurity scattering becomes negligible compared to intrinsic scattering. Thus, the
strong mobility decrease observed at large carrier densities cannot be assessed for ionized
impurities.

Threading dislocation scattering effects (with core charge potential and deformation
potentials included) are quite similar to those of ionized impurities since they may only lead
to an observable decrease of the mobility in the low-carrier-density range. Their scattering
effect also becomes negligible compared to phonon effects when the free carrier density (and
therefore the screening effect) increases. The only noticeable effect is obtained when the
threading dislocation density reaches a value much larger than 1010 cm−2 which also constitutes
an unrealistic value for our samples, in which the density is about 5 × 109 cm−2.
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Figure 5. The exact theoretical fit of the tendency experimental curve (full curve with black
squares), obtained by adjusting just the correlation length describing the interface roughness. The
dashed curve represents the correlation length values when only phonon scattering mechanisms and
interface roughness are considered. The full curve represents the correlation length when phonon
and carrier–carrier scattering mechanisms are combined with the interface roughness.

Unlike those for the previous scattering centres (ionized impurities and dislocations), the
interface roughness scattering mechanisms are efficient in the low-and in high-free-carrier-
density ranges. The right order of magnitude for the low-carrier-density range is found for
covering factors φ of the order of 0.5 and correlation lengths of the order of ∼90 nm (although,
obviously, other (φ, d) couples of values may be chosen).

Considering then, phonon, carrier–carrier and interface roughness mechanisms only, we
were able to reconstitute the tendency curve for the experimental results (figure 5, full curve
with black squares) by just adjusting the correlation length. For example, the dashed curve
in figure 5 represents the correlation length obtained by combining the phonon scattering
with the interface roughness scattering, while the full curve corresponds to the correlation
length obtained when phonon and carrier–carrier scattering are combined with the interface
roughness scattering. It is worth noting that the whole tendency curve may be fitted with a
constant correlation length up to the carrier density ∼1013 cm−2 and then with a regularly
decreasing correlation length. This decrease reflects therefore interface quality degradation
with increasing AlGaN thicknesses and/or the alloy composition x .

Finally, it is worth mentioning that the correlation function chosen to describe the interface
roughness may also be used for any other kind of interface defect and, in particular, the
nano-defects observed in the AlGaN top surfaces of the 2DEG structures [7]. Only the
prefactor Vn would depend on the exact nature of the interface defects involved. However,
numerical calculations show that the results are not so sensitive to this Vn-factor but much
more to the correlation length d . Thus, instead of an interface ‘geometrical’ roughness,
a lot of other ‘exotic mechanisms’—for example, cracks appearing at the AlGaN layer or
misfit dislocation tangles randomly distributed at the interface and randomly modifying the
interface areal electrical charge (leading thus to a sort of interface ‘electrical’ roughness)—
may always be imagined. Thus the effect of interface ‘geometrical’ roughness constitutes
only one possibility that may explain the strong mobility decay. We therefore suggest that
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the experimental mobility behaviour versus carrier density corresponding to increased Al% or
AlGaN thickness is consistent with both:

(i) a progressive degradation of the interface (electrical or geometrical) quality;
(ii) an increasing effect of inhomogeneous scattering mechanisms induced by the AlGaN

quality degradation.
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